Physical constant
A physical constant or natural constant (occasionally also elementary constant) is a physical quantity whose value cannot be influenced and does not change in space or time.
Fundamental constants of nature are those constants that relate to general properties of space, time, and physical processes that apply equally to every kind of particle and interaction. These are the speed of light, Planck's quantum of action, and the gravitational constant (see also Natural Units).
Other elementary (or fundamental) constants of nature relate to the individual types of particles and interactions, e.g. their masses and charges. Derived natural constants can be calculated from the fundamental and elementary constants. For example, Bohr's radius, a constant relevant to atomic physics, can be calculated from Planck's quantum of action, the speed of light, the elementary charge and the mass of the electron.
Sometimes parameters or coefficients which are constant only in a certain arrangement or constellation are called constants, e.g. Kepler's constant, the decay constant or the spring constant. Strictly speaking, however, they are not constants, but parameters of the arrangement under investigation.
Some natural sciences combine important constants into groups of fundamental constants, e.g. in astronomy and geodesy these are the exact reference values of earth and sun mass, the earth radius, the astronomical unit or the gravitational constant.
Reference values commonly used in practice, such as the duration of a year, the pressure of the standard atmosphere or the acceleration due to gravity, are not natural constants. They are useful to man in his earthly environment, but as a rule they have no significance of a fundamental nature beyond that, nor do they prove to be truly constant with increasing measurement accuracy. However, they served for the first definition of units of measurement (also e.g. for second, meter, kilogram). Modern efforts have been made to define the units of measurement by direct reference to (fundamental or elementary) natural constants. The natural constants selected for this purpose are thus given a fixed, unchanging numerical value. By the 26th General Conference on Weights and Measures, all units of the International System of Units were defined with effect from 20 May 2019 by three fundamental natural constants (c, h, e), one special atomic transition (νCs) and three arbitrarily determined constants (kB, NA, Kcd).
Table of some constants
The digits in parentheses after a numerical value denote the uncertainty in the last digits of the value. (Example: The so-called shorthand notation 6.674 30(15) is equivalent to 6.674 30 ±0.000 15). The uncertainty is given as the estimated standard deviation of the given numerical value from the actual value. The numerical values are based on CODATA 2018.
Designation of the constant | Symbol(s) | Value (SI) | Fundamental | Note | ||||||||||||||||
Electromagnetism | ||||||||||||||||||||
Speed of light in vacuum |
| 299792458 | Yes | Nk. F. | ||||||||||||||||
Elementary charge |
| 1.602176634e-19 | Yes | Nk. F. | ||||||||||||||||
Magnetic field constant |
| 1.25663706212(19)e-6 | Yes | fK. a. M. | ||||||||||||||||
Electric field constant |
| 8.8541878128(13)e-12 | Yes | fK. a. M. | ||||||||||||||||
Coulomb constant |
| 8.9875517922(14)e9 | Yes | fK. a. M. | ||||||||||||||||
Wave impedance of the vacuum |
| 3.76730313667(57)e2 Ω | Yes | fK. a. M. | ||||||||||||||||
Gravity and cosmology | ||||||||||||||||||||
Gravitational constant |
| 6.67430(15)e-11 | Yes | Nk. M. | ||||||||||||||||
Planck mass |
| 2.176434(24)e-8 | Yes | |||||||||||||||||
Planck length |
| 1.616255(18)e-35 | Yes | |||||||||||||||||
Planck time |
| 5.391247(60)e-44 | Yes | |||||||||||||||||
Gravitational coupling constant |
| 1.751810(39)e-45 | No | Nk. a. M. | ||||||||||||||||
Thermodynamics | ||||||||||||||||||||
Boltzmann constant |
| 1.380649e-23 = 8.617333262...e-5 | Yes | fK. F. | ||||||||||||||||
Stefan-Boltzmann constant |
| 5.670374419...e-8 | Yes | fK. a. F. | ||||||||||||||||
Vienna Constant |
| 2.897771955...e-3 | Yes | fK. a. F. | ||||||||||||||||
Avogadro constant |
| 6.02214076e23 | No | fK. F. | ||||||||||||||||
Faraday constant |
| 96485.3321233100184... | No | fK. a. F. | ||||||||||||||||
Gas constant |
| 8.31446261815324 | No | fK. a. F. | ||||||||||||||||
Loschmidt constant at T0=273.15 K and p0=101.325 kPa | or | 2.686780111...e25 | No | fK. a. F. | ||||||||||||||||
Molar volume of an ideal gas |
| 0.02241396954... | No | fK. a. F. | ||||||||||||||||
Atomic Physics | ||||||||||||||||||||
Rydberg constant |
| 1.0973731568160(21)e7 | No | F. a. M. | ||||||||||||||||
Rydberg Energy |
| 13.605693122994(26) = 2.1798723611035(42)e-18 | No | |||||||||||||||||
Rydberg frequency |
| 3.2898419602508(64)e15 | No | |||||||||||||||||
Hartree Energy |
| 4.3597447222071(85)e-18 | No | |||||||||||||||||
Quantum and particle physics | ||||||||||||||||||||
Planck's constant |
| 6.62607015e-34 = 4.135667696...e-15 | Yes | Nk. F. | ||||||||||||||||
Planck's reduced quantum of action |
| 1.054571817...e-34 | Yes | Nk. a. F. | ||||||||||||||||
Spectral radiation constant |
| 1.191042972...e-16 | Nk. a. F. | |||||||||||||||||
First radiation constant |
| 3.741771852...e-16 | Yes | Nk. a. F. | ||||||||||||||||
Second radiation constant |
| 1.438776877...e-2 | Yes | fK. a. F. | ||||||||||||||||
Fine structure constant |
| 7.2973525693(11)e-3 = (137.035999084(21))−1 | No | F. a. M. | ||||||||||||||||
Nuclear Magneton |
| 5.0507837461(15)e-27 | No | Nk. a. M. | ||||||||||||||||
magnetic flux quantum |
| 2.067833848...e-15 | No | Nk. a. F. | ||||||||||||||||
Josephson constant |
| 4.835978484...e14 | No | Nk. a. F. | ||||||||||||||||
Von Klitzing constant |
| 25812.80745... Ω | No | Nk. a. F. | ||||||||||||||||
Conductance quantum |
| 7.748091729...e-5 | No | Nk. a. F. | ||||||||||||||||
Fermi constant |
| 4.5437957(23)e14 = 1.1663787(6)e-5 | No | ??? | ||||||||||||||||
Electron | ||||||||||||||||||||
Electron mass |
| 9.1093837015(28)e-31 = 5.48579909065(16)e-4 | No | Nk. M. | ||||||||||||||||
Compton wavelength of the electron |
| 2.42631023867(73)e-12 | No | Nk. a. M. | ||||||||||||||||
Drilling radius |
| 5.29177210903(80)e-11 | No | fK. a. M. | ||||||||||||||||
Classical electron radius |
| 2.8179403262(13)e-15 | No | Nk. a. M. | ||||||||||||||||
Bohr's magneton |
| 9.2740100783(28)e-24 | No | fK. a. M. | ||||||||||||||||
Magnetic moment of the electron |
| -9.2847647043(28)e-24 | No | ??? | ||||||||||||||||
Landé factor of the electron |
| -2.00231930436256(35) | No | ??? | ||||||||||||||||
Gyromagnetic ratio of the electron |
| 1.76085963023(53)e11 | No | ??? | ||||||||||||||||
Specific charge of the electron |
| -1.75882001076(53)e11 | No | Nk. a. M. | ||||||||||||||||
Neutron | ||||||||||||||||||||
Neutron mass |
| 1.67492749804(95)e-27 = 1.00866491595(49) | No | Nk. M. | ||||||||||||||||
Gyromagnetic ratio of the neutron |
| 1.83247171(43)e8 | No | ??? | ||||||||||||||||
Magnetic moment of the neutron |
| -9.6623651(23)e-27 | No | ??? | ||||||||||||||||
Proton | ||||||||||||||||||||
Proton mass |
| 1.67262192369(51)e-27 = 1.007276466621(53) | No | Nk. M. | ||||||||||||||||
Gyromagnetic ratio of the proton |
| 2.6752218744(11)e8 | No | ??? | ||||||||||||||||
Magnetic moment of the proton |
| 1.41060679736(60)e-26 | No | ??? | ||||||||||||||||
Ratio of proton mass to electron mass |
| 1836.15267343(11) | No | ??? | ||||||||||||||||
| ||||||||||||||||||||
|
Constancy of the constants of nature
Whether the constants of nature are also really constant over astronomical time periods is the subject of current research. For example, measurements of the spectral lines of quasars with the Keck telescope in Hawaii seemed to indicate a slight decrease in the fine structure constant by about one hundredth of a part per thousand over the course of ten billion years. This result was controversial from the beginning; on the one hand, researchers pointed out the uncertain error estimate of the data analysis, and on the other hand, there are data from the Oklo mine in West Africa, where about 2 billion years ago uranium had accumulated to such an extent and had such a high content of the isotope U-235 that a nuclear fission chain reaction took place. According to these data, the fine structure constant had the same numerical value then as it does today. Recent measurements of the spectral lines of quasars with the Very Large Telescope of the European Southern Observatory in Chile contradict the earlier results at the Keck telescope and point to the constancy of the fine structure constant.
In the meantime, precision measurements are possible that can verify any steady fluctuations of the order of magnitude suggested by the observations with the Keck telescope, even in the laboratory over short periods of time. Investigations by Theodor Hänsch and his research group at the Max Planck Institute of Quantum Optics prove the constancy of the fine structure constant with an accuracy of 15 decimal places over a period of four years.